Search results for "Strain energy release rate"
showing 10 items of 12 documents
Numerical and Experimental Analysis of the Frictional Effects on 4ENF Delamination Tests Performed on Unidirectional CFRP
2015
Abstract Progressive delamination in composite materials under static or fatigue loading condition are, in many structures, one of the predominant cause of failure. In the paper, an accurate study of quasi-static delamination growth under mode II loading condition is conducted. Several experimental tests are performed on composite laminates consisting of unidirectional carbon/epoxy layers. Four-point end-notched flexure (4ENF) test is employed in order to characterize the mode II interlaminar fracture toughness. The R-curve is obtained by means of optical and numerical determination of crack tip position. The energy release rate and the crack length are calculated through experimental deter…
Fatigue Design of Cruciform Joints including V-notch Effect at the Weld Toe
2014
Abstract The present paper proposes a new and more accurate fatigue life prediction model for fillet welded joints in steel subjected to constant amplitude loading. With the traditional fracture mechanics approach, the greatest difficulty when computing the fatigue life of a welded detail is to determine the initial crack size a0. The classical way to determine the stress intensity factor K (SIF) is by using the following formula Where σ is the applied stress, a is the crack size and g(a/T) the geometrical correction factor which has been determined by Gurney function or similar solutions. This approach is not accurate for short crack because of the singular V-notch behaviour close to the c…
Infrared Thermography assisted evaluation of static and fatigue Mode II fracture toughness in FRP composites
2019
Abstract The work proposes the combined use of a Modified Transverse Crack Tension (MTCT) test coupon and Infrared Thermography, to evaluate the static and fatigue behaviour of Fibre Reinforced Polymer composites under Mode II delamination. Artificial delaminations starters are added to the TCT coupon, whose effects on the Strain Energy Release Rate are discussed. Infrared Thermography and Thermoelastic Stress Analysis are implemented to investigate stresses and delaminations growths on two FRP materials: a pre-preg IM7/8552 carbon fibre-epoxy and a glass-fibre reinforced epoxy laminates. The thermographic, thermoelastic and second harmonic signals have been obtained and used to monitor the…
Deformation and failure of MXene nanosheets
2020
This work is aimed at the development of finite element models and prediction of the mechanical behavior of MXene nanosheets. Using LS-Dyna Explicit software, a finite element model was designed to simulate the nanoindentation process of a two-dimensional MXene Ti3C2Tz monolayer flake and to validate the material model. For the evaluation of the adhesive strength of the free-standing Ti3C2Tz-based film, the model comprised single-layered MXene nanosheets with a specific number of individual flakes, and the reverse engineering method with a curve fitting approach was used. The interlaminar shear strength, in-plane stiffness, and shear energy release rate of MXene film were predicted using th…
Fatigue crack growth in welds based on a V-notch model for the short crack propagation at the toe
2018
Abstract This work presents a new fatigue crack growth prediction model for non-load-carrying fillet welded steel joints. For this joint configuration the fatigue cracks will emanate from the weld toe region. Due to the presence of a V-notch in this region the crack initiation point becomes a point of singularity for the stress field. This may in many cases make it difficult to determine the Stress Intensity Factor Range (SIFR) for small cracks by conventional methods based on Linear Elastic Fracture Mechanics (LEFM). The present approach solves this problem by using the Energy Release Rate (ERR) to determine the SIFR in the small crack growth regime. The model is fitted to crack growth cur…
Experimental Tests of Fatigue Induced Delamination in Gfrp and Cfrp Laminates
2007
This work deals with the experimental analysis of the delamination phenomena in various composite materials under different loading conditions. Quasi-static and fatigue tests are performed on specimens made of glass-fibre reinforced plastic (GFRP) and carbon-fibre reinforced plastic (CFRP). In particular, under both quasi-static and fatigue loading, single fracture modes I and II (using standard DCB and ENF test configurations) and mixed modes I+II (using the MMB test configuration) with several mode mixtures, have been analysed. Further experiments of delamination growth with mode mixture that varies with the crack length, will be performed.
Thermodynamics and continuum fracture mechanics for nonlocal-elastic plastic materials
2002
Nonlocal elasticity is used as an improved elasticity model which engenders no crack-tip stress singularities and thus makes applicable the classical stress-based failure criteria. Considering nonlocal-elastic plastic materials exposed to softening by particle decohesion in a process surface and to subsequent surface separation by fracture, fracture mechanics is addressed within the framework of irreversible internal-variable thermodynamics in the hypothesis of small strains and arbitrary (but sufficiently regular) fracture surface (crack surface plus process surface). The state equations and the energy dissipation densities are derived for the bulk material and for the process surface, for…
Mixed mode energy release rates for bonded composite joints
2011
Abstract: Analytical formulae developed by Luo and Tong (2009) to determine the mixed mode strain energy release rates of laminated and co-cured composite structures and joints are reviewed. The effects of varying loading conditions and geometries on the mode mixity found analytically are investigated via a parametric study. A critical evaluation of the analytical formulae indicates that the formulae are robust in calculating the total strain energy release rate, but may underestimate the mode II component compared with the finite element analysis and experimental results. Possible reasons for this discrepancy are discussed, including the effect of stress concentrations and singularities at…
Competition between the buckling-driven delamination and wrinkling in compressed thin coatings
2012
Abstract The competition between two common failure modes of a thin coating under in-plane compression, the surface wrinkling and the buckling-driven delamination, is studied to assess the critical strain when the mechanical instability may occur at given geometrical and material parameters. A buckling map is constructed based on results of a finite element analysis, which relates the critical applied strain for the onset of instability to the interface adhesion and elastic properties of materials. An approximate scaling relation is derived for the energy release rate of buckling-driven delamination of a coating deposited on a compliant substrate.
Crack growth analysis at adhesive–adherent interface in bonded joints under mixed mode I/II
2008
The propagation of an interface crack subjected to mixed mode I/II was investigated for two 2024-T351 aluminum thin layers joined by means of DP760 epoxy adhesive produced by 3M©. On the basis of beam theory, an analytical expression for computing the energy release rate is presented for the mixed-mode end loaded split (MMELS) test. The analytical strain energy release rate was compared by finite element (FE) analysis using the virtual crack closure technique (VCCT). Several fatigue crack growth tests were carried out in a plane bending machine to compare the experimental energy release rates to those of the analytical and FE solutions. Experimental results showed the relationship between t…